Investigation of the usability of three-dimensional printers in glass product design



Glass, Three-dimensional printer, Glass product design, Glass forming techniques


Glass, is a very difficult and costly material to shape.  Especially glass shaped by hand using traditional methods can be challenging in the creation of some forms, which can limit the glass shaper in terms of design and application. However, it is obvious that three-dimensional glass printers, which have been researched and tested recently, will offer an alternative shaping method for those working in the field of glass in the future. As a result, there is a need for this research in order to analyze the stage of research and studies in the field of glass and to give direction to the development. This research aims to assess the usability of 3D printers in glass product design, considering evolving application methods. Data on 3D printers and their diversity were collected through observation, document analysis, academic sources, and studies. The technology’s pros and cons were examined through product production processes and results of private companies experimenting with it. Findings show that while glass objects produced with 3D printers are still in prototype stages, they offer potential for easier production of complex forms compared to traditional methods, promising advancements in glass design.


Altunkaynak, D. (2020). A eksen 3 boyutlu yazıcı tasarımı ve uygulaması [Yayımlanmamış Yüksek Lisans Tezi, Karabük Üniversitesi̇].

Brun, P.-T., Inamura, C., Lizardo, D., Franchin, G., Stern, M., Houk, P., & Oxman, N. (2017). The molten glass sewing machine. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 375(2093), 20160156.

Carcreff, J., Cheviré, F., Galdo, E., Lebullenger, R., Gautier, A., Adam, J. L., Coq, D. L., Brilland, L., Chahal, R., Renversez, G., & Troles, J. (2021). Mid-infrared hollow core fiber drawn from a 3d printed chalcogenide glass preform. Optical Materials Express, 11(1), 198-209.

Hao, L., Tang, D., Sun, T., Xiong, W., Feng, Z., Evans, K. E., & Li, Y. (2021). Direct ink writing of mineral materials: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(12), 665-685.

Klein, J., Stern, M., Franchin, G., Kayser, M., Inamura, C., Dave, S., Weaver, J. C., Houk, P., Colombo, P., Yang, M., & Oxman, N. (2015). Additive manufacturing of optically transparent glass. 3D Printing and Additive Manufacturing, 2(3), 92-105.

Klein, T. (2018). Augmented fauna and glass mutations: A dialogue between material and technique in glassblowing and 3d printing. Leonardo, 51(4), 336-342.

Kotz, F., Plewa, K., Bauer, W., Schneider, N., Keller, N., Nargang, T., Helmer, D., Sachsenheimer, K., Schäfer, M., Worgull, M., Greiner, C., Richter, C., & Rapp, B. E. (2016). Liquid glass: A facile soft replication method for structuring glass. Adv. Mater, 28, 4646-4650.

Kotz, F., Arnold, K., Bauer, W., Schild, D., Keller, N., Sachsenheimer, K., Nargang, T. M., Richter, C., Helmer, D., & Rapp, B. E. (2017). Three-dimensional printing of transparent fused silica glass. Nature, 544, 337-339.

Kotz, F., Arnold, K., Risch, P., & Rapp, B. E. (2018a). Next-generation 3D printing of glass: The emergence of enabling materials, Proc. SPIE 10804, Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence, 108040I, 1-6.

Kotz, F., Schneider, N., Striegel, A., Wolfschläger, A., Keller, N., Worgull, M., Bauer, W., Schild, D., Milich, M., Greiner, C., Helmer, D., & Rapp, B. E. (2018b). Glassomer-processing fused silica glass like a polymer, Advanced Materials, 30(22), 1707100, 1-5.

Kotz, F., Risch, P., Arnold, K., Sevim, S., Puigmartí-Luis, J., Quick, A., Thiel, M., Hrynevich, A., Dalton, P. D., Helmer, D., & Rapp, B. E. (2019). Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nature Communications, 10, 1439.

Küçükbiçmen, E. (2015). Cam şekillendirme yöntemleri̇ ve kişisel yorumlar [Yayımlanmamış Sanatta Yeterlik Tezi, Anadolu Üniversitesi].

Lizardo, D. (2018). Printing a glass ecology [Masters of Science in Media Arts and Sciences, Massachusetts Institute of Technology].

Moore, D. G., Barbera, L., Masania, K., & Studart, A. R. (2020). Three-dimensional printing of multicomponent glasses using phase-separating resins. Nature Materials, 19, 212-217.

Nguyen, D. T., Meyers, C., Yee, T. D., Dudukovic, N. A., Destino, J. F., Zhu, C., Duoss, E. B., Baumann, T. F., Suratwala, T., Smay, J. E., & Dylla‐Spears, R. (2017). 3d-printed transparent glass. Advanced Materials, 29(26).

Özgündoğdu, A. F. (2014). Seramik üretiminde çağdaş bir biçimlendirme yöntemi olarak üç boyutlu yazıcılar. 8. Uluslararası Eskişehir Pişmiş̧ Toprak Sempozyumu Bildiriler Kitabı, s. 203.

Al Jazeera. (2015, 22 Ağustos). Üç boyutlu yazıcıda cam baskısı dönemi. Al Jazeera. (23.11.2022).

ders. (2019, 3 Ocak). MIT upgraded their glass 3D printer: G3DP2. 3ders. (10.01.2023).

Dağ, E. (2020, 20 Şubat). Reçineli 3d yazıcı teknolojisiyle üretim. 3D3 Teknoloji. (23.12.2022).

Okumuş, U. (t.y.). 3D cam baskı. 3d Print Dünyası. (07.01.2023).

Glassomer. (t.y.) Revolutionary Glass Production. Glassomer. (21.04.2022).

Mensley, M. (2017, 14 Mart). Micron 3dp installs its first high-resolution glass 3d printer. All3dp. (15.12.2022).

Yıldırım, A., Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. Baskı). Seçkin Yayıncılık.